Substitute:
#u = sqrt(x^2+5)#
#du = (xdx)/sqrt(x^2+5)#
so:
#int sqrt(x^2+5)/x dx = int (x^2+5)/x^2 x/sqrt(x^2+5)dx = int (u^2du)/(u^2-5)#
Reduce the degree of the numerator by splitting:
#int (u^2du)/(u^2-5) = int (u^2-5+5du)/(u^2-5) = int (1+5/(u^2-5))du #
using the linearity of the integral:
#int (u^2du)/(u^2-5) =int du +5int 1/(u^2-5)du #
#int (u^2du)/(u^2-5) =u +5int 1/(u^2-5)du #
Solve the resulting integral by partial fraction decomposition:
#1/(u^2-5) = 1/((u-sqrt5)(u+sqrt5)#
#1/(u^2-5) = A/(u-sqrt5)+B/(u+sqrt5)#
#1= A(u+sqrt5)+B(u-sqrt5)#
#1= (A+B) u + (A-B)sqrt5#
#{(A+B=0),(A-B = 1/sqrt5):}#
#{(A=1/(2sqrt5)),(B = -1/(2sqrt5)):}#
so:
#int 1/(u^2-5)du = int (du)/(2sqrt5(u-sqrt5))-int(du)/(2sqrt5(u+sqrt5))#
#int 1/(u^2-5)du = 1/(2sqrt5) ln abs(u-sqrt5)-1/(2sqrt5)ln abs (u+sqrt5)+ C#
and using the properties of logarithms:
#int 1/(u^2-5)du = 1/(2sqrt5) ln abs((u-sqrt5)/ (u+sqrt5))+ C#
Put together the partial results:
#int sqrt(x^2+5)/x dx = u +sqrt5/2 ln abs((u-sqrt5)/ (u+sqrt5))+ C#
and undo the substitution:
#int sqrt(x^2+5)/x dx = sqrt(x^2+5) +sqrt5/2 ln abs((sqrt(x^2+5)-sqrt5)/ (sqrt(x^2+5)+sqrt5))+ C#