What is the limit of this ? #lim_(x->0) (e^x - e^-x -2x)/(x-sinx)#

2 Answers
Mar 25, 2018

#lim_(x->0) (e^x-e^-x-2x)/(x-"sen"(x)) = 2#

Explanation:

#lim_(x->0) (e^x-e^-x-2x)/(x-"sen"(x))#

La regla de L'Hospital:

#lim(f(x)/g(x)) = lim((f'(x))/(g'(x)))#

Usando la regla:

#lim_(x->0) (e^x+e^-x-2)/(1-"cos"(x))#

Otra vez:

#lim_(x->0) (e^x-e^-x)/("sen"(x))#

Otra vez:

#lim_(x->0) (e^x+e^-x)/("cos"(x))#

#= (e^(0) + e^(0))/("cos"(0))#

#=(1+1)/(1)#

#=2#

Mar 25, 2018

The limit equals #2#.

Explanation:

We immediately see that if we try and evaluate, we get #0/0#. Therefore, we may apply l'Hospitals.

#L = lim_(x-> 0) (e^x + e^-x - 2)/(1 - cosx)#

Once again trying to evaluate, we get #0/0#. L'Hospitals is going to have to be applied AGAIN!

#L = lim_(x-> 0) (e^x -e^(-x))/(sinx)#

Once again #0/0#. L'hospitals will be used once more.

#L =lim_(x-> 0) (e^x + e^(-x))/cosx#

Finally something we can evaluate through substitution!

#L = (e^0 + e^0)/cos(0) = 2/1 = 2#

Hopefully this helps!