How do you integrate #int sqrt(4-sqrtx)# using substitution?

2 Answers
Mar 28, 2018

#intsqrt(4-sqrtx)dx=-16/3(4-sqrtx)^(3/2)+4/5(4-sqrtx)^(5/2)+C#

Explanation:

Let #u=4-sqrt(x)#

Solving for #sqrtx# yields

#sqrtx=4-u#

And,

#du=-1/(2sqrtx)dx#

Initially, it does not seem like #du# shows up in the integral at all. But with some manipulation and simplification, this substitution becomes valid:

#-2sqrtxdu=dx#

#-2(4-u)du=dx#

Thus, our integral becomes

#intsqrt(u)(-2)(4-u)du#

#-2intu^(1/2)(4-u)du#

#-2int(4u^(1/2)-u^(3/2))du=-2((4)(2/3)u^(3/2)-2/5u^(5/2))+C=-2(8/3u^(3/2)-2/5u^(5/2))+C=-16/3u^(3/2)+4/5u^(5/2)+C#

Rewriting in terms of #x# yields

#intsqrt(4-sqrtx)dx=-16/3(4-sqrtx)^(3/2)+4/5(4-sqrtx)^(5/2)+C#

Mar 28, 2018

Look to explanation

Explanation:

Notice how you can use a whole integrand substitution
#u=\sqrt{4-\sqrt{x}}\tox=(4-u^2)^2#
And we notice that
#dx=-4u(4-u^2) du#
So therefore we see that
#\int\sqrt{4-\sqrt{x}}dx=\int u\cdot(-4u(4-u^2))du#
This can be simplified to
#\int4u^4-16u^2 du=4/5u^5-16/3u^3+C#
And then you need to substitute the value of #u# to obtain
#\int\sqrt{4-\sqrt{x}}dx=4/5(\sqrt{4-\sqrt{x}})^5-16/3(\sqrt{4-\sqrt{x}})^3+C#