Prove cos^2x tanx / sinx = cosx?
1 Answer
Mar 28, 2018
We seek to prove that:
# cos^2x tanx/sinx -= cos x#
Consider the LHS of the expression:
# LHS -= cos^2x tanx/sinx #
# \ \ \ \ \ \ \ \ = cos x * cosx * ((sinx/cosx)) / sin x #
# \ \ \ \ \ \ \ \ = cos x * cosx * (sinx/cosx) * 1/ sin x #
After cancelling we get:
# LHS = cos x * cancel(cosx) * (cancel(sinx)/cancel(cosx)) * 1/ cancel(sin x) #
# \ \ \ \ \ \ \ \ = cos x #
# \ \ \ \ \ \ \ \ = RHS \ \ \ QED #