How do you use the chain rule to differentiate #y=(x^2+3)^4#?

2 Answers
Mar 30, 2018

#=>y' = 8x(x^2+3)^3 #

Explanation:

Chain rule is:

#(d)/(dx) f(g(x)) = (df(g(x)))/(dg(x)) * (dg(x))/(dx)#

We have:

  • #f(g(x)) = (x^2+3)^4#
  • #g(x) = (x^2+3)#

So we first compute #(df(g(x)))/(dg(x))#.

#(d(x^2+3)^4)/(d(x^2+3)) = color(blue)(4(x^2+3)^3)#

Now we compute #(dg(x))/(dx)#.

#(d(x^2+3))/(dx) = color(blue)(2x)#

We multiply these two results to get the final solution:

#=>y' = 8x(x^2+3)^3 #

Mar 30, 2018

#8x(x^2+3)^3#

Explanation:

The chain rule states that,

#dy/dx=dy/(du)*(du)/dx#

Let #u=x^2+3#, then #(du)/dx=2x#.

We have: #y=u^4#, and therefore #dy/(du)=4u^3#.

Multiply these results together to get,

#dy/dx=4u^3*2x#

#=8xu^3#

Now, we undo the substitution #u=x^2+3#, and we get:

#=8x(x^2+3)^3#