How do you solve #-5(2x-6)+8x=22#?

3 Answers
Mar 30, 2018

#x=4#

Explanation:

#-5(2x-6)+8x=22#

#rArr -10x+30+8x=22#

#rArr 30-2x=22#

#rArr 2x=8#

#rArr x=8/2#

#:. x=4#

Hope this helps :)

Mar 30, 2018

#x=4#

Explanation:

#-5(2x-6)+8x=22# (distribute -5 to the numbers in the brackets)

#-10x+30+8x=22# (Combine like terms)

#-2x+30=22# (Subtract 30 from both sides)

#-2x=-8# (Divide both sides by -2 to isolate the variable)

#x=4#

Check the answer by plugging it into the original equation:

#-5(2(4)-6)+8(4)=22#

#-5(8-6)+32=22#

#-5(2)+32=22#

#-10+32=22#

#22=22#

Mar 30, 2018

#x=4#

Explanation:

#"distribute and simplify left side of equation"#

#-10x+30+8x=22#

#rArr-2x+30=22#

#"subtract 30 from both sides"#

#-2xcancel(+30)cancel(-30)=22-30#

#rArr-2x=-8#

#"divide both sides by "-2#

#(cancel(-2) x)/cancel(-2)=(-8)/(-2)#

#rArrx=4#

#color(blue)"As a check"#

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

#-5(8-6)+(8xx4)=-10+32=22=" right side"#

#rArrx=4" is the solution"#