Solving Trigonometric Equation. Rewrite the equation 3cscx - sinx = 2 in terms of sine. Then, solve algebraically for 0 < x < 2pi?

Sorry for asking too many questions.

2 Answers
Apr 2, 2018

#x_(1_1)=pi/2 or x_(1_2)=-7/4pi#

Explanation:

#3cscx - sinx = 2|*sin(x)#
#3-sin(x)^2=2sin(x)|+sin(x)^2|-3#
#0=sin(x)^2+2sin(x)+1-1-3#
#0=(sin(x)+1)^2-4|+4#
#4=(sin(x)+1)^2|sqrt()#
#+-2=sin(x)+1|-1#
#-1+-2=sin(x)#

#arcsin(-1+-2)=x#
#x_1=arcsin(1)+2pin, n∈ZZ#
#x_1=pi/2+2pin, n∈ZZ#

#x_2=arcsin(-3)+2pin#
#arcsin(-3) " can't be expressed with real numbers."#

#arcsin(-3) and x_2 ∈CC#

#"For " 0 < x < 2pi:#
#x_(1_1)=pi/2+2pi*0=pi/2 or x_(1_2)=pi/2-1*2pi=-7/4pi#

Apr 3, 2018

#pi/2#

Explanation:

3csc x - sin x = 2
#3/(sin x) - sin x = 2#
#3 - sin^2 x = 2sin x#
Solve this quadratic equation for sin x
#sin^2 x + 2sin x - 3 = 0#
Since a + b + c = 0, use shortcut. There are 2 real roots:
sin x = 1 , and #sin x = c/a = - 3# (rejected)
Answer -->
sin x = 1 --> #x = pi/2#