How do you use the chain rule to differentiate #2^(-9z^2+3z+5)#?
1 Answer
Apr 3, 2018
# d/(dz) 2^(-9z^2+3z+5) = (-18z+3)(ln 2) 2^(-9z^2+3z+5) #
Explanation:
We seek:
# dy/(dz)# where#y = 2^(-9z^2+3z+5) #
We can use logarithmic differentiation:
# ln y = ln (2^(-9z^2+3z+5) )#
# \ \ \ \ \ = (-9z^2+3z+5)ln 2 #
Now differentiate Implicitly:
# 1/y dy/(dz) = (-18z+3)ln 2 #
So that:
# dy/(dz) = (-18z+3)(ln 2) y#
# \ \ \ \ \ = (-18z+3)(ln 2) 2^(-9z^2+3z+5) #
We can also use the chain rule directly, and write the function as:
# y = 2^(-9z^2+3z+5) #
# \ \ = e^((ln2)(-9z^2+3z+5)) #
Then applying the chain rule:
# dy/(dz) = e^((ln2)(-9z^2+3z+5)) d/(dz){ (ln2)(-9z^2+3z+5)} #
Giving the same result.