How do you divide #3x^3+5x^2+2x-12# by #x+3#?

2 Answers

#p(x)=3x^2-4x+14+((-54))/(x+3)#

Explanation:

Let #3x^3+5x^2+2x-12# be #p(x)#
Using long division of polynomial's
#(+)3x^2-4x+14#
#root(x+3)(3x^3+5x^2+2x-12)#
#((-)3x^3+9x^2)/(-4x^2+2x-12)#
#((-)-4x^2-12x)/(14x-12)#
#((-)14x+42)/-54#
#p(x)=Q(x)+(R)/D#
Where,#Q=#quotient
#R=#remainder
#D=#divisor
#=>p(x)=3x^2-4x+14+((-54))/(x+3)#

Apr 7, 2018

#3x^2-4x+14-54/(x+3)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(3x^2)(x+3)color(magenta)(-9x^2)+5x^2+2x-12#

#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(magenta)(+12x)+2x-12#

#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)color(magenta)(-42)-12#

#=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)-54#

#"quotient "=color(red)(3x^2-4x+14)," remainder "=-54#

#rArr3x^3+5x^2+2x-12#

#=3x^2-4x+14-54/(x+3)#