How do you divide 3x^3+5x^2+2x-123x3+5x2+2x−12 by x+3x+3?
2 Answers
Explanation:
Let
Using long division of polynomial's
Where,
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(3x^2)(x+3)color(magenta)(-9x^2)+5x^2+2x-123x2(x+3)−9x2+5x2+2x−12
=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(magenta)(+12x)+2x-12=3x2(x+3)−4x(x+3)+12x+2x−12
=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)color(magenta)(-42)-12=3x2(x+3)−4x(x+3)+14(x+3)−42−12
=color(red)(3x^2)(x+3)color(red)(-4x)(x+3)color(red)(+14)(x+3)-54=3x2(x+3)−4x(x+3)+14(x+3)−54
"quotient "=color(red)(3x^2-4x+14)," remainder "=-54quotient =3x2−4x+14, remainder =−54
rArr3x^3+5x^2+2x-12⇒3x3+5x2+2x−12
=3x^2-4x+14-54/(x+3)=3x2−4x+14−54x+3