Series and sequences?

This is for self-reference ( I will be answering it ).
Feel free to edit if you want to correct anything, though.

  1. Determine if the following sequences are convergent or divergent.
    a) #a_n=(2n^3-6)/(n^2+20n)#
    b) #a_n=\tan^-1(n)#
    c) #a_n=(1+n)^(1/n)#
    d) #a_n=(1-4/n)^n#

  2. Determine if the following series are convergent or divergent. Use the appropriate test and check all the conditions.
    a) #6-2+2/3-2/9+2/27-2/81+...#
    b) #\sum_(n=1)^\infty1/(n(1+\ln^2n))#
    c) #\sum_(n=1)^\infty(7+n)/(n+6)#
    d) #\sum_(n=1)^\infty\ln(n)/n#
    e) #\sum_(n=0)^\infty(\pi/(2e))^n#
    f) #\sum_(n=2)^\infty1/(n(\ln(n))^2#
    g) #\sum_(n=1)^\infty(1-1/n)^n#

  3. Find the values of #x# of which the following series is convergent.
    #\sum_(n=0)^\infty(2x-3)^n#

  4. Solve the following differential equations.
    a) #y-xy'=3-2x^2y'#
    b) #y'-1/xy=2x^2\ln(x)#

1 Answer
Apr 9, 2018
  1. a) #\infty#, divergent
    b) #\pi/2#, convergent
    c) #1#, convergent #\color(red)(♦)#
    d) #1/e^4#, convergent

  2. a) #r\lt1#, convergent #\color(red)(♦)#
    b) #\pi/2#, convergent
    c) #1#, divergent
    d) #\infty#, divergent
    e) convergent to #(2e)/(2e-\pi)#
    f) #1/\ln(2)#, convergent
    g) #1/e\ne0#, divergent

  3. convergent on #1\ltx\lt2# #\color(red)(♦)#

  4. a) #y=3+x/(A(2x-1))# OR #y=3x+(Cx)/(2x-1)# #\color(red)(♦)#
    b) #y=x^3\lnx-x^3/2+Cx# #\color(red)(♦)#

Explanation:

#\color(red)(♦)# Some questions have been answered previously; I credit the users who helped me below, with URLs.

computer

computer