Let:
#x= tant#
with #t in (-pi/2,pi/2)#
#dx = sec^2t dt #
#1+x^2 = 1+tan^2t = sec^2t#
Then:
#int (x^4dx)/(1+x^2)^3 = int ( tan^4t sec^2t dt)/sec^6t#
#int (x^4dx)/(1+x^2)^3 = int tan^4t /sec^4t dt#
and as:
#tant/sect = (sint /cost )/(1/cost) = sint#
then:
#int (x^4dx)/(1+x^2)^3 = int sin^4t dt#
Write the integrand as:
#sin^4t = sin^2t (1-cos^2t) = sin^2t- sin^2tcos^2t#
#sin^4t = 1/2- (cos 2t)/2 - (sin^2 2t)/4#
#sin^4t = 1/2- (cos 2t)/2 - (1-cos4t)/8#
#sin^4t = 3/8 - (cos 2t)/2 +(cos4t)/8#
Then using the linearity of the integral:
#int (x^4dx)/(1+x^2)^3 = 3/8 int dt - 1/2 int cos2tdt +1/8 int cos4t dt#
#int (x^4dx)/(1+x^2)^3 = (3t)/8 - (sin2t)/4 + (sin4t)/32 +C#
To undo the substitution use the trigonometric formulas:
#sin 4t = 2 sin 2t cos 2t#
to have:
#int (x^4dx)/(1+x^2)^3 = (3t)/8 - (sin2t)/4 + (sin2tcos2t)/16 +C#
and then the parametric formulas:
#sin 2t = (2tant)/(1+tan^2t) = (2x)/(1+x^2)#
#cos 2t = (1-tan^2t)/(1+tan^2t) = (1-x^2)/(1+x^2)#
so:
#int (x^4dx)/(1+x^2)^3 = (3arctanx)/8 -x/(2(1+x^2)) + (x(1-x^2))/(8(1+x^2)^2) +C#
and simplifying:
#int (x^4dx)/(1+x^2)^3 = (3arctanx)/8 -(4x(1+x^2) - x(1-x^2))/(8(1+x^2)^2) +C#
#int (x^4dx)/(1+x^2)^3 = (3arctanx)/8 -(5x^3+3x)/(8(1+x^2)^2) +C#