How do you integrate # [ln sqrt x] / x#?

1 Answer
Apr 12, 2018

The integral equals #1/4ln^2x + C#

Explanation:

We can rewrite using logarithm laws.

#I = int ln(x^(1/2))/xdx#

#I =int lnx/(2x) dx#

We now let #u = lnx#. Then #du = 1/xdx# and then #dx= xdu#.

#I = int u/(2x) * x du#

#I = int 1/2u du#

#I = 1/2(1/2u^2) + C#

#I = 1/4ln^2x + C#

Hopefully this helps!