For the integral involving the root #sqrt(x^2-a^2),# we use the substitution:
#x=asectheta#
#dx=asecthetatanthetad theta#
So, we get
#int(cancelacancelsecthetatanthetasqrt(a^2(sec^2theta-1)))/(cancelacancelsectheta))d theta#
Recalling the identity #sec^2theta-1=tan^2theta#, we get
#intatanthetasqrt(tan^2theta)=intatan^2thetad theta#
To integrate this, we'll use the identity #tan^2theta=sec^2theta-1# again.
#inta(sec^2theta-1)d theta=intasec^2thetad theta-intad theta=atantheta-atheta+C#
We need to get things in terms of #x.# Recalling that #x=asectheta, sectheta=x/a, theta=sec^-1(x/a)#
To find the tangent, we'll use the identity
#tan^2theta=sec^2theta-1#
#tan^2theta=x^2/a^2-1#
#tantheta=sqrt(x^2-a^2)/a#
Thus,
#intsqrt(x^2-a^2)/xdx=(asqrt(x^2-a^2))/a-asec^-1(x/a)+C#
#intsqrt(x^2-a^2)/xdx=sqrt(x^2-a^2)-asec^-1(x/a)+C#