How do you find the derivative of #sqrt(x^2-1) / (x^2+1)#?
2 Answers
Explanation:
Using quotient rule:
Mind that:
So the solution is:
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"Given "y=(g(x))/(h(x))" then"#
#dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=sqrt(x^2-1)=(x^2-1)^(1/2)#
#"differentiate using the "color(blue)"chain rule"#
#rArrg'(x)=1/2(x^2-1)^(-1/2)xxd/dx(x^2-1)#
#color(white)(rArrg'(x))=x(x^2-1)^(-1/2)#
#h(x)=x^2+1rArrh'(x)=2x#
#rArrdy/dx=(x(x^2-1)^(-1/2)(x^2+1)-2x(x^2-1)^(1/2))/(x^2+1)^2#
#color(white)rArrdy/dx=(x(x^2-1)^(-1/2)[x^2+1-2(x^2-1)])/(x^2+1)^2#
#color(white)(rArrdy/dx)=(3x-x^3)/(sqrt(x^2-1)(x^2+1)^2)#