Given: #intln(1/x) \ dx#
Notice how it equals #intln(1/x)*1 \ dx#.
Using integration by parts:
#intu \ dv=uv-intv \ du#
Let #u=ln(1/x),:.du=-1/x \ dx# by the chain rule.
Then, #dv=1 \ dx, v=int1 \ dx=x#. We don't put the constant until we finish the whole integration.
Inputting, we get,
#intln(1/x) \ dx=xln(1/x)-intx*(-1/x) \ dx#
#=xln(1/x)-int-1 \ dx#
#=xlnx(1/x)-(-x)#
#=xln(1/x)+x#
We now simplify the #xln(1/x)# part.
Notice that #ln(1/x)=ln(x^-1)=-1lnx=-lnx# by the power rule for logarithms.
So we get:
#=x*-lnx+x#
#=-xlnx+x#
Finally, we add a constant, and so the final answer is:
#color(blue)(=barul|-xlnx+x+C|#