#tan(sec^(-1)sqrt((u^2+9)/u))=# ? im not sure how to solve this please help ?

2 Answers
Apr 30, 2018

#tan(sec^(-1)(sqrt((u^2+9)/u)))=sqrt((u^2-u+9)/u)#

Explanation:

Let #sec^(-1)(sqrt((u^2+9)/u))=x# then

#rarrsecx=sqrt((u^2+9)/u)#

#rarrtanx=sqrt(sec^2x-1)=sqrt((sqrt((u^2+9)/u))^2-1)#

#rarrtanx=sqrt((u^2+9-u)/u)=sqrt((u^2-u+9)/u)#

#rarrx=tan^(-1)(sqrt((u^2-u+9)/u))=sec^(-1)(sqrt((u^2+9)/u))#

Now, #tan(sec^(-1)(sqrt((u^2+9)/u)))=tan(tan^(-1)(sqrt((u^2-u+9)/u)))=sqrt((u^2-u+9)/u)#

Apr 30, 2018

Rule:-#" "color(red)(ul(bar(|color(green)(sec^-1(x/y)=tan^-1(sqrt(x^2-y^2)/y))|#

#tan(sec^(-1)sqrt((u^2+9)/u))#

#=tan(sec^-1(sqrt(u^2+9)/sqrtu))#

#=tan(tan^-1(sqrt((sqrt(u^2+9))^2-(sqrtu)^2)/sqrtu))#

#=tan(tan^-1(sqrt(u^2+9-u)/sqrtu))#

#=sqrt(u^2+9-u)/sqrtu#

#=sqrt(u+9/u-1)#

Hope it helps...
Thank you...

:-)

You can easily find the derivation of the rule I used. Try it.

My this incomplete scratchpad may help you.

Make the inverse functions into trigonometric functions and then solve it.