How do you use trig identities to show that this is true? #tan^3x/(1+tan^2x)+cot^3x/(1+cot^2x)=(1-2cos^2x sin^2x)/(sinxcosx)#
I'm am not sure how to prove that this is true
I'm am not sure how to prove that this is true
2 Answers
We seek to prove the identity:
# (tan^3x)/(1+tan^2x)+(cot^3x)/(1+cot^2x) -=(1-2cos^2x sin^2x)/(sinxcosx) #
Consider the LHS:
# LHS= (tan^3x)/(1+tan^2x)+(cot^3x)/(1+cot^2x) #
# \ \ \ \ \ \ \ \ = (tan^3x)/(sec^2x)+(cot^3x)/(csc^2x) #
# \ \ \ \ \ \ \ \ = (sin^3x/cos^3x)(cos^2x)+(cos^3x/sin^3x)sin^2x #
# \ \ \ \ \ \ \ \ = sin^3x/cosx+cos^3x/sinx #
# \ \ \ \ \ \ \ \ = ((sin^3x)(sinx) +(cos^3x)(cosx))/(sinxcosx) #
# \ \ \ \ \ \ \ \ = (sin^4x +cos^4x)/(sinxcosx) #
# \ \ \ \ \ \ \ \ = (sin^2xsin^2x +cos^2xcos^2x)/(sinxcosx) #
# \ \ \ \ \ \ \ \ = ((1-cos^2x)sin^2x +(1-sin^2x)cos^2x)/(sinxcosx) #
# \ \ \ \ \ \ \ \ = ((sin^2x-sin^2xcos^2x) +(cos^2x-sin^2xcos^2x))/(sinxcosx) #
# \ \ \ \ \ \ \ \ = (sin^2x+cos^2x-2sin^2xcos^2x)/(sinxcosx) #
# \ \ \ \ \ \ \ \ = (1-2sin^2xcos^2x)/(sinxcosx) #
# \ \ \ \ \ \ \ \ = RHS \ \ \ # QED