How do you integrate #int x+cosx# from [pi/3, pi/2]? Calculus Introduction to Integration Definite and indefinite integrals 3 Answers James May 4, 2018 The answer #int _(pi/3)^(pi/2)x+cosx*dx=0.8193637907356557# Explanation: show below #int _(pi/3)^(pi/2)x+cosx*dx=[1/2x^2+sinx]_(pi/3)^(pi/2)# #[pi^2/8+sin(pi/2)]-[pi^2/18+sin(pi/3)]=(5*pi^2-4*3^(5/2)+72)/72=0.8193637907356557# Answer link Andrea S. May 4, 2018 #int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72# Explanation: Using the linearity of the integral: #int_(pi/3)^(pi/2) (x+cosx)dx = int_(pi/3)^(pi/2)xdx + int_(pi/3)^(pi/2) cosxdx# Now: #int_(pi/3)^(pi/2)xdx = [x^2/2]_(pi/3)^(pi/2) = pi^2/8-pi^2/18 = (5pi^2)/72# #int_(pi/3)^(pi/2) cosxdx = [sinx]_(pi/3)^(pi/2) = sin(pi/2)-sin(pi/3) = 1-sqrt3/2 # Then: #int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72# Answer link Jim S May 4, 2018 #(5π^2)/72+1-sqrt3/2# Explanation: #int_(π/3)^(π/2)(x+cosx)dx# #=# #int_(π/3)^(π/2)xdx+int_(π/3)^(π/2)cosxdx# #=# #[x^2/2]_(π/3)^(π/2)# #+# #[sinx]_(pi/3)^(π/2)# #=# #(π^2/4)/2-(π^2/9)/2+sin(π/2)-sin(π/3)# #=# #π^2/8-π^2/18+1-sqrt3/2# #=# #(5π^2)/72+1-sqrt3/2# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 3374 views around the world You can reuse this answer Creative Commons License