How do you find #int (x^2+2x+1)/((x+1)(x^2-2)) dx# using partial fractions?

2 Answers
May 6, 2018

#I=1/2ln|x^2-2|+1/(2sqrt2)ln|(x-sqrt2)/(x+sqrt2)|+c#

Explanation:

We know that,

#color(red)((1)int(d/(dx)(f(x)))/(f(x))dx=ln|f(x)|+c#

#color(blue)((2)int1/(x^2-a^2)dx=1/(2a)ln|(x-a)/(x+a)|+c#

Here,

#I=int(x^2+2x+1)/((x+1)(x^2-2))dx#

#=int(x+1)^2/((x+1)(x^2-2))dx#

#=int(x+1)/(x^2-2)dx#

#=int[x/(x^2-2)+1/(x^2-2)]dx#

#=1/2int(2x)/(x^2-2)dx+int1/(x^2-(sqrt2)^2)dx#

Using #color(red)((1)) and color(blue)((2)) #, we get

#I=1/2ln|x^2-2|+1/(2sqrt2)ln|(x-sqrt2)/(x+sqrt2)|+c#

May 6, 2018

Given: #int (x^2+2x+1)/((x+1)(x^2-2)) dx#

The numerator factors:

#int (x+1)^2/((x+1)(x^2-2)) dx#

Cancel the common factor:

#int (x+1)/(x^2-2) dx#

The denominator can be factored as the difference of two squares:

#int (x+1)/((x-sqrt2)(x+sqrt2) dx#

Write the partial fractions equation:

#(x+1)/((x-sqrt2)(x+sqrt2)) = A/(x-sqrt2)+B/(x+sqrt2)#

Multiply both sides by #(x-sqrt2)(x+sqrt2)#:

#x+1 = A(x+sqrt2)+B(x-sqrt2)#

Let #x = sqrt2#:

#sqrt2+1 = A(sqrt2+sqrt2)+B(sqrt2-sqrt2)#

#sqrt2+1 = A(2sqrt2)#

#A = (2+sqrt2)/4#

Let #x = -sqrt2#:

#-sqrt2+1 = A(-sqrt2+sqrt2)+B(-sqrt2-sqrt2)#

#-sqrt2+1 = B(-2sqrt2)#

#B = (2-sqrt2)/4#

Write in integral form:

#(2+sqrt2)/4 int 1/(x-sqrt2) dx + (2-sqrt2)/4 int 1/(x+sqrt2) dx#

The integrals become natural logarithms:

#(2+sqrt2)/4 ln(x-sqrt2) + (2-sqrt2)/4 ln(x+sqrt2)+ C#