How do you factor #125x^3-27#?
1 Answer
May 9, 2018
Explanation:
#125x^3-27" is a "color(blue)"difference of cubes"#
#"and factors in general as"#
#•color(white)(x)a^3-b^3=(a-b)(a^2+ab+b^2)#
#125x^3=(5x)^3rArra=5x#
#27=(3)^3rArrb=3#
#rArr125x^3-27=(5x-3)((5x)^2+(5x xx3)+3^2)#
#color(white)(xxxxxxxxxx)=(5x-3)(25x^2+15x+9)#