How do you evaluate the integral #(secx tanx) / (sec^2(x) - secx)# dx? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer maganbhai P. May 10, 2018 #I=ln|1-cosx|+c# Explanation: We know that, #color(red)((1)tanx=sinx/cosx and secx= 1/cosx# Here, #I=int(secxtanx)/(sec^2x-secx)dx# #=int(cancelsecxtanx)/(cancelsecx(secx-1))dx# #=inttanx/(secx-1)dx# #=int(sinx/cosx)/(1/cosx-1)dx...tocolor(red)(Apply(1)# #I=intsinx/(1-cosx)dx# Let, #1-cosx=u=>sinxdx=du# #I=int1/udu# #=ln|u|+c, where, u=1-cosx# #I=ln|1-cosx|+c# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 10503 views around the world You can reuse this answer Creative Commons License