If #a_n# converges and #lim_(n->oo) a_n -b_n=c#, where c is a constant, does #b_n# converge?

1 Answer
May 10, 2018

#lim_(n->oo) b_n = -c+ lim_(n->oo) a_n#

Explanation:

Let:

#lim_(n->oo) a_n = L#

Then for any number #epsilon > 0# we can find #N_epsilon# such that:

#n > N_epsilon => abs (a_n-L) < epsilon/2#

Similarly, as #lim_(n->oo) (a_n-b_n) = c# for the same #epsilon# we can find #M_epsilon# such that:

#n > M_epsilon => abs(a_n-b_n -c) < epsilon/2#

Consider now the quantity:

#abs (-b_n +L - c) = abs(a_n-b_n -c-a_n+L)#

using the triangular inequality:

#abs (-b_n +L - c) <= abs(a_n-b_n -c)+abs(-a_n+L)#

But then if we take #P_epsilon = max(M_epsilon,N_epsilon)# we have:

#n > P_epsilon => abs (-b_n +L - c) < epsilon/2+epsilon/2#

which means:

#lim_(n->oo) b_n = L-c#