How do you integrate #int x^3sqrt(4-9x^2)# by trigonometric substitution?

2 Answers
May 12, 2018

#I=1/1215[3sqrt(4-9x^2))^5-20(sqrt(4-9x^2))^3]+c#

Explanation:

Here,

#I=intx^3 sqrt(4-9x^2)dx#

let,

#3x=2sinu=>x=2/3sinu=>dx=2/3cosudu and #

#9x^2=4sin^2u andsinu=(3x)/2=>cos^2u=1-(9x^2)/4#

#=>cos^2u=(4-9x^2)/4=>cosu=1/2sqrt(4-9x^2)#

So,

#I=int(2/3sinu)^3sqrt(4-4sin^2u)xx2/3cosudu#

#=int8/27sin^3u(2cosu)2/3cosudu#

#=32/81intsin^3ucos^2udu#

#=32/81intsin^2ucos^2usinudu#

#=-32/81int[(1-cos^2u)cos^2u(-sinu)du#

#=-32/81[intcos^2u(-sinu)du-intcos^4u(-sinu)du]#

#=-32/81[int(cosu)^2d/(dx)(cosu)du-int(cosu)^4d/(dx)(cosu)du]#

#=-32/81[(cosu)^3/3-(cosu)^5/5]+c#

#=-32/(81xx15)[5(cosu)^3-3(cosu)^5]+c#

Subst. #cosu=1/2sqrt(4-9x^2#

#I=-32/1215[5xx(sqrt(4-9x^2))^3/(8)-3xx(sqrt(4- 9x^2))^5/(32)]+c#

#I=-1/1215[20(sqrt(4-9x^2))^3-3(sqrt(4-9x^2))^5]+c#

#I=1/1215[3sqrt(4-9x^2))^5-20(sqrt(4-9x^2))^3]+c#

May 12, 2018

#I=1/1215[3(sqrt(4-9x^2))^5-20(sqrt(4-9x^2))^3]+c#

Explanation:

Method Without trigonometric substitution.

#I=intx^3sqrt(4-9x^2)dx=intx^2sqrt(4-9x^2)*xdx#

Let,

#sqrt(4-9x^2)=u=>4-9x^2=u^2=>9x^2=4-u^2#

#=>x^2=1/9(4-u^2)=>2xdx=-2/9udu#

#=>xdx=-1/9uduand#

So,

#I=int1/9(4-u^2)(u)(-1/9u)du#

#=1/81int(u^2-4)u^2du#

#=1/81int(u^4-4u^2)du#

#=1/81[u^5/5-(4u^3)/3]+c#

#=1/(81xx15)[3u^5-20u^3]+c#

Subst. #u=sqrt(4-9x^2)#

#I=1/1215[3(sqrt(4-9x^2))^5-20(sqrt(4-9x^2))^3]+c#