How do you find the maximum, minimum and inflection points and concavity for the function #y=x^4-8x^3#?

1 Answer
May 14, 2018

Please see the explanation below

Explanation:

First calculate, the first derivative

#y=x^4-8x^3#

#y'=4x^3-24x^2=4x^2(x-6)#

The critical points are when #y'=0#

#4x^2(x-6)=0#

#=>#, #{(x=0),(x=6):}#

Build a variation chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##0##color(white)(aaaaaa)##6##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x^2##color(white)(aaaaaaaa)##+##color(white)(aaaa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##x-6##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaaa)##+#

#color(white)(aaaa)##y'##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaaa)##+#

#color(white)(aaaa)##y##color(white)(aaaaaaaaa)##↘##color(white)(aaaa)##↘##color(white)(aaaaa)##↗#

There is a local minimum at #(6, -432)#

Calculate the second derivative

#y''=12x^2-48x=12x(x-4)#

The inflection points are when #y''=0#

#12x(x-4)=0#

#=>#, #{(x=0),(x=4):}#

Build a variation chart

#color(white)(aaaa)##" Interval "##color(white)(aaaa)##(-oo,0)##color(white)(aaaa)##(0,4)##color(white)(aaaaaa)##(4,+oo)#

#color(white)(aaaaaa)##"Sign y'' "##color(white)(aaaaaaa)##+##color(white)(aaaaaaa)##-##color(white)(aaaaaaaaa)##+#

#color(white)(aaaaaa)##" y "##color(white)(aaaaaaaaaaa)##uu##color(white)(aaaaaaa)##nn##color(white)(aaaaaaaaa)##uu#

The inflection points are #(0,0)# and #(4,-256)#

The curve is convex when # x in (-oo,0) uu(4, +oo)#

The curve is concave when # x in (0,4)#

graph{x^4-8x^3 [-25.66, 25.67, -12.83, 12.83]}