How is the integral of #int x / ( sinh(x) + cosh(x) ) dx#?

2 Answers
May 16, 2018

#-xe^(-x)-e^(-x)+C#

Explanation:

#int x/(sinhx+coshx)*dx#

=#int x/(e^x)*dx#

=#int xe^(-x)*dx#

=#x*(-e^(-x))-int (-e^(-x))*dx#

=#-xe^(-x)+int e^(-x)*dx#

=#-xe^(-x)-e^(-x)+C#

May 16, 2018

Given: #int x / ( sinh(x) + cosh(x) ) dx#

Multiply the integrand by 1 in the form of #(sinh(x)-cosh(x))/(sinh(x)-cosh(x))#:

#int x / ( sinh(x) + cosh(x) ) dx = int x / ( sinh(x) + cosh(x) )(sinh(x)-cosh(x))/(sinh(x)-cosh(x)) dx#

The denominator is multiplied using the difference of two squares pattern and the numerator is multiplied using the distributive property:

#int x / ( sinh(x) + cosh(x) ) dx = int (xsinh(x)-xcosh(x)) / ( sinh^2(x) - cosh^2(x)) dx#

The identity #cosh^2(x)- sinh^2(x)=1# tells us that the denominator is -1:

#int x / ( sinh(x) + cosh(x) ) dx = int (xsinh(x)-xcosh(x)) / -1 dx#

Eliminate the denominator by changing signs in the numerator:

#int x / ( sinh(x) + cosh(x) ) dx = int xcosh(x)-xsinh(x) dx#

Separate into two integrals:

#int x / ( sinh(x) + cosh(x) ) dx = int xcosh(x) dx- int xsinh(x) dx#

Both integrals are trivial integrations by parts:

#int x / ( sinh(x) + cosh(x) ) dx = (xsinh(x) - cosh(x)) - (xcosh(x)-sinh(x))+C#

Regroup:

#int x / ( sinh(x) + cosh(x) ) dx = xsinh(x)- xcosh(x)+ sinh(x)- cosh(x) +C#