Given: #int x / ( sinh(x) + cosh(x) ) dx#
Multiply the integrand by 1 in the form of #(sinh(x)-cosh(x))/(sinh(x)-cosh(x))#:
#int x / ( sinh(x) + cosh(x) ) dx = int x / ( sinh(x) + cosh(x) )(sinh(x)-cosh(x))/(sinh(x)-cosh(x)) dx#
The denominator is multiplied using the difference of two squares pattern and the numerator is multiplied using the distributive property:
#int x / ( sinh(x) + cosh(x) ) dx = int (xsinh(x)-xcosh(x)) / ( sinh^2(x) - cosh^2(x)) dx#
The identity #cosh^2(x)- sinh^2(x)=1# tells us that the denominator is -1:
#int x / ( sinh(x) + cosh(x) ) dx = int (xsinh(x)-xcosh(x)) / -1 dx#
Eliminate the denominator by changing signs in the numerator:
#int x / ( sinh(x) + cosh(x) ) dx = int xcosh(x)-xsinh(x) dx#
Separate into two integrals:
#int x / ( sinh(x) + cosh(x) ) dx = int xcosh(x) dx- int xsinh(x) dx#
Both integrals are trivial integrations by parts:
#int x / ( sinh(x) + cosh(x) ) dx = (xsinh(x) - cosh(x)) - (xcosh(x)-sinh(x))+C#
Regroup:
#int x / ( sinh(x) + cosh(x) ) dx = xsinh(x)- xcosh(x)+ sinh(x)- cosh(x) +C#