How do you evaluate the indefinite integral #int (6x^7)dx#?
2 Answers
May 18, 2018
Explanation:
For this indefinite integral we can apply the power rule.
The power rule states:
So, when we plug in our values we get:
May 18, 2018
Explanation:
#"integrate using the "color(blue)"power rule"#
#•color(white)(x)int(ax^n)=a/(n+1)x^(n+1)color(white)(x);n!=-1#
#rArrint(6x^7)dx#
#=6/8x^((7+1))+c=3/4x^8+c#
#"where c is the constant of integration"#