How do you evaluate the indefinite integral #int (6x^7)dx#?

2 Answers
May 18, 2018

#int(6x^7)dx = (3x^8)/4 + C#

Explanation:

For this indefinite integral we can apply the power rule.

The power rule states: #intx^ndx = (x^(n+1))/(n+1) + C#

So, when we plug in our values we get: #int(6x^7)dx = (6x^(7+1))/(7+1)#

# = (6x^8)/(8) #

#= (3x^8)/4#

#= (3x^8)/4 + C#

May 18, 2018

#3/4x^8+c#

Explanation:

#"integrate using the "color(blue)"power rule"#

#•color(white)(x)int(ax^n)=a/(n+1)x^(n+1)color(white)(x);n!=-1#

#rArrint(6x^7)dx#

#=6/8x^((7+1))+c=3/4x^8+c#

#"where c is the constant of integration"#