How do you use partial fraction decomposition to decompose the fraction to integrate #4/((x^2+9)(x+1))#?

2 Answers
May 19, 2018

#int4/((x²+9)(x+1))dx=-1/5ln(x²+9)+2/15arctan(x/3)+2/5ln(|x+1|)+ C#
#C in RR#

Explanation:

#int4/((x²+9)(x+1))dx=4int1/((x²+9)(x+1))dx#
let #1/((x²+9)(x+1))=(Ax+B)/(x²+9)+C/(x+1)#
#1=(Ax+B)(x+1)+C(x²+9)#
#1=Ax²+Ax+Bx+B+Cx²+9C#

#1=(A+C)x²+(A+B)x+9C#
By identification :

#A+C=0#[1]
#A+B=0#[2]
#9C+B=1#[3]

#A+C=0#
#B-C=0#
#9C+B=1#[3]

#A+C=0#
#B-C=0#
#10C=1#

#A=-1/10#
#B=1/10#
#C=1/10#

So: #4int1/((x²+9)(x+1))dx=4int((-1/10x+1/10)/(x²+9)+(1/10)/(x+1))dx#

#=-4/10intx/(x²+9)dx+4/10int1/(x²+9)dx+4/10int1/(x+1)dx#
#=-2/10int(2x)/(x²+9)dx+2/5int1/(x²+3²)dx+2/5int1/(x+1)dx#
Because #int(u')/udu=ln(|u|)#, #int1/(x²+b²)dx=1/b*arctan(x/b)#,
we have :

#int4/((x²+9)(x+1))dx=-1/5ln(x²+9)+2/15arctan(x/3)+2/5ln(|x+1|)+ C#
#C in RR#

\0/ Here's our answer !

May 19, 2018

See the explanation below

Explanation:

The decomposition into partial fractions is

#4/((x^2+9)(x+1))=(Ax+B)/(x^2+9)+C/(x+1)#

#=((Ax+B)(x+1)+C(x^2+9))/((x^2+9)(x+1))#

The denominators are the same, compare the numerators

#4=(Ax+B)(x+1)+C(x^2+9)#

Let #x=-1#, #=>#, #4=10C#, #=>#, #C=2/5#

The coefficients of #x^2# are

#0=A+C#, #=>#, #A=-C=-2/5#

Let #x=0#

#4=B+9C#, #=>#, #B=4-9C=4-18/5=2/5#

Therefore,

#4/((x^2+9)(x+1))=(-2/5x+2/5)/(x^2+9)+(2/5)/(x+1)#

So, the integral is

#I=int(4dx)/((x^2+9)(x+1))=int((-2/5x+2/5)dx)/(x^2+9)+int(2/5dx)/(x+1)#

#=2/5ln(|x+1|)+I_1#

#I_1=2/5int((-x+1)dx)/(x^2+9)#

#=2/5int(-xdx)/(x^2+9)+2/5int(dx)/(x^2+9)#

#=-2/5*1/2ln(x^2+9)+2/5*1/9*3arctan(x/3)#

Finally,

#int(4dx)/((x^2+9)(x+1))=2/5ln(|x+1|)-1/5ln(x^2+9)+2/15arctan(x/3)+C#