How do you integrate #int 1/(x^3 -1)# using partial fractions?
1 Answer
May 22, 2018
Separate into integrable parts.
Explanation:
Let
#I=int1/(x^3-1)dx#
Factorize:
#I=int1/((x-1)(x^2+x+1))dx#
Apply partial fraction decomposition:
#I=1/3int(1/(x-1)-(x+2)/(x^2+x+1))dx#
Rearrange:
#I=1/3int(1/(x-1)-1/2(2x+1)/(x^2+x+1)-3/2 1/(x^2+x+1))dx#
Complete the square in the last term:
#I=1/3int(1/(x-1)-1/2(2x+1)/(x^2+x+1)-6/((2x+1)^2+3))dx#
Integrate term by term:
#I=1/3{ln|x-1|-1/2ln|x^2+x+1|+sqrt3tan^(-1)((2x+1)/sqrt3)}+C#
Simplify:
#I=1/3ln|x-1|-1/6ln|x^2+x+1|+1/sqrt3tan^(-1)((2x+1)/sqrt3)+C#