How do you find the derivative of #(ln x)^(1/5)#?
1 Answer
May 27, 2018
Explanation:
#"differentiate using the "color(blue)"chain rule"#
#"given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#d/dx((lnx)^(1/5))#
#=1/5(lnx)^(-4/5)xxd/dx(lnx)#
#=1/(5x(lnx)^(4/5))#