#int dx/(x^4*sqrt(x^2+3))#
After using #x=sqrt3*tany# and #dx=sqrt3*(secy)^2*dy# transforms, I found
#int (sqrt3*(secy)^2*dy)/((sqrt3*tany)^4*sqrt((sqrt3*tany)^2+3))#
=#int (sqrt3*(secy)^2*dy)/((9(tany)^4*sqrt((sqrt3*secy)^2))#
=#int (sqrt3*(secy)^2*dy)/((9(tany)^4*sqrt3*secy)#
=#1/9int (secy*dy)/(tany)^4#
=#1/9int (coty)^4*secy*dy#
=#1/9int (cosy/siny)^4*(dy/cosy)#
=#1/9int ((cosy)^3*dy)/(siny)^4#
=#1/9int ((cosy)^2*cosy*dy)/(siny)^4#
=#1/9int ((1-(siny)^2)*cosy*dy)/(siny)^4#
After using #z=siny# and #dz=cosy*dy# transforms, it became
#1/9int ((1-z^2)*dz)/z^4#
=#1/9int z^(-4)*dz-1/9int z^(-2)*dz#
=#1/9z^(-1)-1/27z^(-3)+C#
=#1/9(siny)^(-1)-1/27(siny)^(-3)+C#
=#1/9cscy-1/27(cscy)^3+C#
After using #x=sqrt3*tany#, #tany=x/sqrt3#, #secy=sqrt(x^2+3)/sqrt3# and #cscy=secy/tany=sqrt(x^2+3)/x# inverse transforms, I found
#sqrt(x^2+3)/(9x)-(x^2+3)^(3/2)/(27x^3)+C#