How do you evaluate # 2 cos (pi/3) - 6 tan (pi/3)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer sankarankalyanam Jun 15, 2018 # color(purple)(=> 1 - 6sqrt3)# Explanation: #"From table above", cos (pi/3) = 1/2, tan (pi/3) = sqrt3# #2 cos (pi/3) - 6 tan (pi/3) = 2*(1/2) - 6 * (sqrt3)# # color(purple)(=> 1 - 6sqrt3)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 17734 views around the world You can reuse this answer Creative Commons License