A line segment has endpoints at #(2 , 1)# and #(7 ,6)#. If the line segment is rotated about the origin by #pi #, translated horizontally by #-3 #, and reflected about the y-axis, what will the line segment's new endpoints be?

1 Answer
Jun 16, 2018

#(5,-1)" and "(10,-6)#

Explanation:

#"since there are 3 transformations to be performed label"#
#"the endpoints"#

#A=(2,1)" and "B=(7,6)#

#color(blue)"first transformation"#

#"under a rotation about the origin of "pi#

#• " a point "(x,y)to(-x,-y)#

#A(2,1)toA'(-2,-1)#

#B(7,6)toB'(-7,-6)#

#color(blue)"second transformation"#

#"under a horizontal translation "((-3),(0))#

#• " a point "(x,y)to(x-3,y)#

#A'(-2,-1)toA''(-5,-1)#

#B'(-7,-6)toB''(-10,-6)#

#color(blue)"third transformation"#

#"under a reflection in the y-axis"#

#• " a point "(x,y)to(-x,y)#

#A''(-5,-1)toA'''(5,-1)#

#B''(-10,-6)toB'''(10,-6)#

#"After all 3 transformations"#

#(2,1)to(5,-1)" and "(7,6)to(10,-6)#