How do you verify that the x values #pi/3, (5pi)/3# are solutions to #secx-2=0#?
1 Answer
Jun 21, 2018
Explanation:
#"using the "color(blue)"trigonometric identity"#
#•color(white)(x)secx=1/cosx#
#cos(pi/3)=1/2#
#cos((5pi)/3)=cos(2pi-(5pi)/3)=cos(pi/3)=1/2#
#"substitute the given values of x into the left side of the"#
#"equation and if equal to right side then they are the "#
#"solutions"#
#sec(pi/3)-2=1/cos(pi/3)-2=1/(1/2)-2=2-2=0#
#"hence "pi/3" is a solution to the equation"#
#sec((5pi)/3)-2=1/cos(pi/3)-2=2-2=0#
#"hence "(5pi)/3" is a solution to the equation"#