Can you please explain the steps when you answer ? A laboratory ultracentrifuge is designed to produce a centripetal acceleration of 0.35x10^6 g at a distance of 2.50 cm from the axis. What angular velocity in rev/min is required?

1 Answer
Jun 23, 2018

#n=4.476 xx 10^6(revolution)/(min)#

Explanation:

centripetal acceleration is
#0.35 xx 10^6 g= 0.35 xx 10^6 xx 9,8 m/s^2 = 3,43 xx 10^6 m/s^2#
and you can calculate it throught:
#a_c= v^2/r #
# v^2= a_c /r =(3,43 xx 10^6 m/s^2) /(0.025 m) = 137 xx 10^6 m^2/s^2 #
#v= 11,7 xx 10^3 m/s#
betwenn tangential velocity and angular velocity there is the relationship
#v= omega xx r#
#omega=v/r=(11,7 xx 10^3 m/s)/(0.025 m)= 468 xx 10^3 (rad)/s#
but
#1 (revolution)/ (min)= (2pi (rad))/(60 s)#
#1(rad)/s = 1/(2 pi)(revolution) /((1min)/(60s))#
#n=(60/(2pi)) xx 468 xx 10^3= 4.476 xx 10^6(revolution)/(min)#