How do you find domain and range for #f(x)=(x-2)/(x+4) #?
1 Answer
Jun 25, 2018
Explanation:
The denominator of f(x) cannot be zero as this would make f(x) undefined. Equating the denominator to zero and solving gives the value that x cannot be.
#"solve "x+4=0rArrx=-4larrcolor(red)"excluded value"#
#"domain is "x inRR,x!=-4#
#(-oo,-4)uu(-4,oo)larrcolor(blue)"in interval notation"#
#"let "y=(x-2)/(x+4)#
#"to find the range, rearrange making "x" the subject"#
#y(x+4)=x-2#
#xy+4y=x-2#
#xy-x=-2-4y#
#x(y-1)=-2-4y#
#x=(-2-4y)/(y-1)#
#"solve "y-1=0rArry=1larrcolor(red)"excluded value"#
#"range is "y inRR,y!=1#
#"or "(-oo,1)uu(1,oo)#
graph{(x-2)/(x+4) [-10, 10, -5, 5]}