What is #f(x) = int 1/(x+3)-1/x dx# if #f(-2)=-1 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer Harish Chandra Rajpoot Jul 2, 2018 #f(x)=\ln|{x+3}/{x}|+\ln2-1 # Explanation: #f(x)=\int (\frac{1}{x+3}-1/x)\ dx# #f(x)=\int (\frac{1}{x+3})\ dx-\int 1/x\ dx# #f(x)=\ln|x+3|-\ln|x|+C# #f(x)=\ln|{x+3}/{x}|+C# Given that #f(-2)=-1# hence we have # \ln|{-2+3}/{-2}|+C=-1# #-\ln2+C=-1# #C=\ln2-1# #\therefore f(x)=\ln|{x+3}/{x}|+\ln2-1 # Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1249 views around the world You can reuse this answer Creative Commons License