What is the slope of any line perpendicular to the line passing through #(-17,23)# and #(21,25)#?

2 Answers
Jul 11, 2018

#"perpendicular slope "=-2#

Explanation:

#"calculate the slope m using the "color(blue)"gradient formula"#

#•color(white)(x)m=(y_2-y_1)/(x_2-x_1)#

#"let "(x_1,y_1)=(-17,23)" and "(x_2,y_2)=(21,25)#

#m=(25-23)/(21-(-17))=2/38=1/19#

#"the slope of any perpendicular line is"#

#•color(white)(x)m_(color(red)"perpendicular")=-1/m=-1/(1/19)=-19#

#-19#

Explanation:

The slope #m# of straight line joining #(x_1, y_1)\equiv(-17, 23)# & #(x_2, y_2)\equiv(21, 25)#

#m=\frac{y_2-y_1}{x_2-x_1}#

#=\frac{25-23}{21-(-17)}#

#=1/19#

We know that the product of slope of two perpendicular lines is #-1# then the slope ## of the straight line perpendicular to the given line joining #(-17, 23)# & #(21, 25)#

#=-1/m#

#=-1/(1/19)#

#=-19#