How to prove the trigonometric identity?

#(asinalpha*sinbeta)^2-(acosalpha*cosbeta)^2+(acosalpha)^2=a^2sin^2beta#

1 Answer
Jul 14, 2018

Please see below.

Explanation:

Let #alpha=x and beta=y# then

#LHS=(asinalphasinbeta)^2-(acosalphacosbeta)^2+(acosalpha)^2#

#=(asinxsiny)^2-(acosxcosy)^2+(acosx)^2#

#=a^2sin^2xsin^2y-a^2cos^2xcos^2y+a^2cos^2x#

#=a^2sin^2xsin^2y+a^2cos^2x(1-cos^2y)#

#=a^2sin^2xsin^2y+a^2cos^2xsin^2y#

#=a^2sin^2y(sin^2x+cos^2x)=a^2sin^2y*1=a^2sin^2beta=RHS#