Let, #I=int1/sqrt(e^(2x)+12e^x+45)dx
#.
#e^(2x)+12e^x+45=(e^x+6)^2+3^2#.
So, let us subst. #e^x+6=3tany," so that, "e^xdx=3sec^2ydy#.
#:. dx=(3sec^2ydy)/e^x=(3sec^2ydy)/(3tany-6)=(3sec^2ydy)/(3(tany-2))#.
#:. I=int1/sqrt{(3tany)^2+3^2}*(3sec^2ydy)/(3(tany-2))#,
#=1/3int(secydy)/(tany-2)#,
#:. I=1/3intdy/(siny-2cosy)#.
Now, #siny-2cosy=sqrt5*(1/sqrt5siny-2/sqrt5cosy)#.
#"So, if we set "cosalpha=1/sqrt5," then, "sinalpha=2/sqrt5, and, #
#siny-2cosy=sqrt5(sinycosalpha-cosysinalpha)=sqrt5sin(y-alpha)#.
#:. I=1/3int1/(sqrt5sin(y-alpha))dy#,
#=1/(3sqrt5)intcsc(y-alpha)dy#,
#=1/(3sqrt5)ln|tan((y-alpha)/2)|#,
#rArr I=1/(3sqrt5)ln|tan[1/2{arctan((e^x-6)/3)-arctan2}]|+C#.