How do you solve 2\cdot 3^ { 10x + 6} = 18?

4 Answers
Jul 20, 2018

The solution is =-2/5

Explanation:

The equation is

2*3^(10x+6)=18

Dividing by 2

3^(10x+6)=18/2=9=3^2

Therefore,

The exponents are equal

10x+6=2

10x=2-6=-4

Dividing by 10

x=-4/10=-2/5

Jul 20, 2018

x=-2/5

Explanation:

3^(10x+6)=9

log_(3)3^(10x+6)=log_(3)9

10x+6=2

10x=-4

x=-4/10

x=-2/5

Jul 20, 2018

x=-2/5

Explanation:

Here ,

2*3^(10x+6)=2*9

=>2*3^(10x+6)=2*3^2

Dividing both sides by 2

(cancel2*3^(10x+6))/cancel2=(cancel2*3^2)/cancel2

=>3^(10x+6)=3^2

=>10x+6=2

Adding both sides (-6)

=>10x+6+(-6)=2+(-6)

=>10x=-4

Dividing both sides by 10

=>x=-4/10=-(2xx2)/(2xx5)

=>x=-2/5

x=-0.4

Explanation:

2\cdot 3^{10x+6}=18

3^{10x+6}=18/2

3^{10x+6}=9

3^{10x+6}=3^2

Comparing the powers on base 3 on both the sides we get

10x+6=2

10x=2-6

10=-4

x=-4/10

x=-0.4