#"What we have to do here is compare the distance (d)"#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"Before calculating d we require the new centre of B"#
#"under the given translation"#
#"under the translation "< -2,4>#
#(3,5)to(3-2,5+4)to(1,9)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(8,3)" and "(x_2,y_2)=(1,9)#
#d=sqrt((1-8)^2+(9-3)^2)=sqrt(49+36)=sqrt85~~9.22#
#"sum of radii "=2+3=5#
#"since sum of radii"< d" then no overlap"#
#"min. distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxx)=9.22-5=4.22#
graph{((x-8)^2+(y-3)^2-4)((x-1)^2+(y-9)^2-9)=0 [-40, 40, -20, 20]}