What is the Cartesian form of #( -9 , ( - 15pi)/2 ) #?

1 Answer
Jul 26, 2018

(0. -9)

Explanation:

We have the coordinate #(-9, (-15pi)/2)# in polar form.

Coordinates in polar form have the standard form #(color(green)(r), color(purple)(Θ))#.

To convert from polar form to Cartesian form, we use the following formulas:

  • #color(red)(x) = color(green)(r)coscolor(purple)(Θ)#
  • #color(blue)(y) = color(green)(r)sincolor(purple)(Θ)#

Now, let's plug stuff in. We know #color(green)(r) = -9# and #color(purple)(Θ) = (-15pi)/2#

#color(red)(x) = (-9)*cos((-15pi)/2)#

#color(red)(x) = (-9)*(0)#

#color(red)(x) = 0#

#color(blue)(y) = (-9)*sin((-15pi)/2)#

#color(blue)(y) = (-9)*(1)#

#color(blue)(y) = -9#

We get #color(red)(x) = 0# and #color(blue)(y) = -9#, making our Cartesian coordinate #(0, -9).#