For #f(x)=x^3# what is the equation of the tangent line at #x=-2#?
2 Answers
Explanation:
#"We require the slope of the tangent and a point on it"#
#"slope of tangent "=f'(x)" at "x=-2#
#f'(x)=3x^2#
#f'(-2)=3(-2)^2=12#
#f(-2)=(-2)^3=-8rArr(-2,-8)larr" point"#
#y+8=12(x+2)#
#y=12x+16larrcolor(red)"equation of tangent"#
Explanation:
Setting
The coordinates of point are
Now, differentiating given function w.r.t.
hence the slope
Now, the equation of tangent at the point
y-(-8)=12(x-(-2))#