For #f(x)=x^3# what is the equation of the tangent line at #x=-2#?

2 Answers
Jul 27, 2018

#y=12x+16#

Explanation:

#"We require the slope of the tangent and a point on it"#

#"slope of tangent "=f'(x)" at "x=-2#

#f'(x)=3x^2#

#f'(-2)=3(-2)^2=12#

#f(-2)=(-2)^3=-8rArr(-2,-8)larr" point"#

#y+8=12(x+2)#

#y=12x+16larrcolor(red)"equation of tangent"#

#12x-y+16=0#

Explanation:

Setting #x=-2# in the given function we get y-coordinate of point as follows

#y=f(-2)#

#=(-2)^3#

#=-8#

The coordinates of point are #(-2, -8)#

Now, differentiating given function w.r.t. #x#, we get slope of tangent #dy/dx# as follows

#dy/dx=f'(x)#

#=d/dx(x^3)#

#=3x^2#

hence the slope #m# of tangent at #x=-2#, is given as

#m=f'(-2)#

#=3(-2)^2#

#=12#

Now, the equation of tangent at the point #(x_1, y_1)\equiv(-2, -8)# & slope #m=12# is given by following formula

#y-y_1=m(x-x_1)#

y-(-8)=12(x-(-2))#

#y+8=12x+24#

#12x-y+16=0#