How do you find the exact values of the six trig functions of angle 120? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Harish Chandra Rajpoot Jul 28, 2018 See values of all six trig. functions below Explanation: #\sin120^\circ=\sin(180^\circ-60^circ)=\sin60^\circ=\sqrt3/2# #\cos120^\circ=\cos(180^\circ-60^circ)=-\cos60^\circ=-1/2# #\tan120^\circ=\tan(180^\circ-60^circ)=-\tan60^\circ=-\sqrt3# #\cosec120^\circ=\cosec(180^\circ-60^circ)=\cosec 60^\circ=2/\sqrt3# #\sec120^\circ=\sec(180^\circ-60^circ)=-\sec 60^\circ=-2# #\cot120^\circ=\cot(180^\circ-60^circ)=-\cot60^\circ=-1/\sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 7519 views around the world You can reuse this answer Creative Commons License