A 30.00 mL sample of 0.100 M #"HOI"# is titrated using 0.100 M #"NaOH"#, #K_a=2.3xx10^-11# for #"HOI"#?
A) write a balanced net-ionic equation for the titration reaction.
B) calculate the pH of the titration mixture at the equivalence point.
C) would methyl red be a suitable indicator for the titration?
A) write a balanced net-ionic equation for the titration reaction.
B) calculate the pH of the titration mixture at the equivalence point.
C) would methyl red be a suitable indicator for the titration?
1 Answer
#"HOI"(aq) + "NaOH"(aq) -> "NaOI"(aq) + "H"_2"O"(l)#
Removing the spectator ion
#color(blue)("HOI"(aq) + "OH"^(-)(aq) -> "OI"^(-)(aq) + "H"_2"O"(l))#
Clearly,
We therefore know that
#((0.100 cancel"mol HOI")/cancel"L" xx 0.0300 cancel"L" xx ("1 mol OI"^(-))/cancel("1 mol HOI"))/("0.0300 L" + "0.0300 L") = "0.0500 M OI"^(-)#
Being an anion,
#K_b = K_w/K_a = 10^(-14)/(2.3 xx 10^(-11)) = 4.35 xx 10^(-4)#
at
#"OI"^(-)(aq) + "H"_2"O"(l) rightleftharpoons "OH"^(-)(aq) + "HOI"(aq)#
#K_b = (["OH"^(-)]["HOI"])/(["OI"^(-)])#
#= x^2/(0.0500 - x)#
This
#4.35 xx 10^(-4) ~~ x^2/0.0500#
#x_1 -= ["OH"^(-)] = sqrt(0.0500K_b)#
#= 4.66 xx 10^(-3) "M"#
And this
#x_1/(["OI"^(-)]_i) xx 100% = 9.33%#
So, we adjust accordingly.
#x_2 = sqrt((0.0500 - x_1)K_b) = "0.00444 M"#
#x_3 = sqrt((0.0500 - x_2)K_b) = "0.00445 M"#
#x_4 = sqrt((0.0500 - x_3)K_b) = "0.00445 M"#
and our answer has converged, showing that the percent dissociation is actually
Therefore, the
#color(blue)("pH") = 14 - "pOH"#
#= 14 + log["OH"^(-)]#
#= color(blue)(11.65)#
This must mean that
(Indeed it is, because