Integrate #lnx/10^x#?

3 Answers

mistake

Explanation:

#int(lnx)/10^xdx# can also be written as #int(lnx)xx10^(-x)dx#.

Now, we can use the formula for integral of product

#intu*v*dx=u*v-int(v*du)#, where #u=lnx#

As such, we have #du=(1/x)dx# and let #dv=x^(-10)dx# or #v=x^(-9)/-9#

Hence, #intu*v*dx=(-1/9)lnx.x^(-9)-int(x^(-9)/-9)*dx/x#, or

= #(-1/9)lnx.x^(-9)+(1/9)intx^(-10)*dx#

= #(-1/9)lnx.x^(-9)+(1/9)x^(-9)/(-9)+c#

= #(-1/9)lnx.x^(-9)-(1/81)x^(-9)+c#

= #-1/81(x^(-9))(9lnx+1)+c#

Mar 12, 2016

Appears infinite series integral to me.

Explanation:

We can use the formula for integral of product of two function #u(x) and v(x)#

#intucdotdv=ucdotv-int vcdotdu#

(rule can be simply be derived by integrating the product rule of differentiation)
Given integral #intln(x)//10^xcdotdx# can be written as
#intln(x)xx10^(-x)cdotdx#

Let #u=ln(x) and dv=10^(-x)cdot dx#
from first assumption #du=1/x cdotdx#
from the second equality #v=int 10^-x cdot dx=-1/ln 10 10^-x+C#

We get #intln(x)xx10^(-x)cdotdx=ln(x)cdot(-1/ln 10 10^-x+C)-int(-1/ln 10 10^-x+C)cdot 1/xcdot dx#
Where #C# is a constant of integration.
#=ln(x)cdot(-1/ln 10 10^-x+C)+int1/ln 10 10^-xcdot 1/xcdot dx-intCcdot 1/xcdot dx#
#=ln(x)cdot(-1/ln 10 10^-x+C)+int1/ln 10 10^-xcdot 1/xcdot dx-Ccdot ln|x|+C_2,#simplifying
#=ln(x)cdot(-1/ln 10 10^-x)+1/ln 10 int 10^-xcdot 1/xcdot dx+C_2#

It reduces to finding the integral of #intx^-1cdot 10^-xcdot dx#
Again using the above integral by parts formula
Let #u=x^-1# and #dv=10^(-x)cdot dx#
#du=-x^-2cdot dx# and we already have the value for #v#
#intx^-1cdot 10^-xcdot dx=x^-1cdot (-1/ln 10 10^-x+C)-int(-1/ln 10 10^-x+C)cdot (-x^-2cdot dx)#

  1. Inspection reveals it turns out to be finding #int 10^-xcdot x^-2cdot dx# and so on.
  2. Function #ln (x)# is defined only for #x>0#
  3. The integral appears to be infinite series integral.
Mar 15, 2016

#(lny)(ln(ln_10 y))-lny = (lny)(ln(ln_10 y)-1)#

Then put in #10^x# for #y #

#(ln 10^x )(ln(ln_10 10^x)-ln 10^x#

Explanation:

Let #y=10^x#

#lny=ln10^x#

#lny=x*ln10#

# x=lny/ln10 = ln_10y=log_10exxlog_e y#
#:.dx=log_10exx1/yxxdy#

#int (ln(ln_10 y))/yxxlog_10exx1/yxxdy#
#=int (ln(ln_10 y))/y^2xxlog_10exxdy ; u=ln(ln_10 y)=ln(1/ln10 *lny), dv=1/y#

#du=1/(ln y/ln10) *1/(yln10 ) = (ln10/lny)(1/(yln10))=1/(ylny) #

#v=lny#

#uv-intvdu ->( ln(ln_10 y))lny-intlny *1/(ylny)#

#(lny)(ln(ln_10 y))-int1/y#

#(lny)(ln(ln_10 y))-lny = (lny)(ln_10 y-1)#

Then put in #10^x# for #y #

#ln 10^x (ln(ln_10 10^x)-ln 10^x#

#PROOF:#
#d/dy((lny)(ln(ln_10 y) -1))#

#f=lny, g=ln(ln_10 y) -1)#

#f'=1/y, g'=(1/ln_10y)(1/(yln10))#

#fg'+gf'#---> product rule
#lny *(1/ln_10y)(1/(yln10))+(ln(ln_10y) -1) * 1/y#

#lny (1/(lny/ln10))(1/(yln10))+(ln(ln_10y) -1) * 1/y#

# lny (ln10/lny)(1/(yln10))+(ln(ln_10y) -1) * 1/y#

#1/y +(ln(ln_10 y) -1)/y#

#((1 +ln(ln_10 y) -1))/y#

#(ln(ln_10y))/y#

#ln(x)/10^x#--->#ln_10 y =x# from above