Question #cb563
1 Answer
I got about
DISCLAIMER: LONG ANSWER!
The surface area is given by:
#S = 2pi int_(a)^(b) f(x)sqrt(1 + ((dy)/(dx))^2)dx#
With
#S = 2pi int_(0)^(4) sinxsqrt(1 + cos^2x)dx# .
But since the graph passes through the
graph{y = sinx * sqrt(1 + (cosx)^2) [-0.396, 4.47, -1.087, 1.347]}
...we'll split this integral into two parts.
#S = S_1 + S_2#
#= 2pi int_(0)^(pi) sinxsqrt(1 + cos^2x)dx + 2pi int_(pi)^(4) sinxsqrt(1 + cos^2x)dx#
Let:
#u = cosx#
#du = -sinxdx#
This gives:
#S_i = -2pi int sqrt(1 + u^2)du#
One more substitution. This is of the form
#u = tantheta#
#du = sec^2thetad theta#
#sqrt(1 + u^2) = sqrt(1 + tan^2theta) = sectheta#
Therefore:
#S_i = -2pi int sec^3thetad theta#
If you do not know this integral, I have it here:
Let:
#u = sect#
#dv = sec^2tdt#
#du = sect tantdt#
#v = tant#
#= sect tant - intsect tan^2tdt#
#= sect tant - intsect(sec^2t - 1)dx#
#= sect tant - intsec^3tdt + int sectdt#
#2int sec^3tdt = sect tant + int sectdt#
#int sec^3tdt = 1/2(sect tant + ln|sect+tant|) + C#
So, what we have is:
#S_i = -cancel(2)pi [1/cancel(2) (secthetatantheta + ln|sectheta + tantheta|)]#
Back-substitution gives:
#= -pi [sqrt(1 + u^2)cdotu + ln|sqrt(1 + u^2) + u|]#
#= -pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|#
Evaluating from
#color(green)(S_1) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(0)^(pi)#
#= [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|] - [-pi cos0sqrt(1 + cos^2 0) - piln|sqrt(1 + cos^2 0) + cos0|]#
#= [pi sqrt(2) - piln|sqrt(2) - 1|] - [-pi sqrt(2) - piln|sqrt(2) + 1|]#
#= 2pi sqrt(2) - piln|sqrt(2) - 1| + piln|sqrt(2) + 1|#
#= color(green)(2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)|#
This is approximately
Finally, evaluating from
#color(green)(S_2) = |[-pi cosxsqrt(1 + cos^2x) - piln|sqrt(1 + cos^2x) + cosx|]|_(pi)^(4)#
#= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [-pi cospisqrt(1 + cos^2 pi) - piln|sqrt(1 + cos^2 pi) + cospi|]#
#= [-pi cos4sqrt(1 + cos^2 4) - piln|sqrt(1 + cos^2 4) + cos4|] - [pi sqrt(2) - piln|sqrt(2) - 1|]#
#= -pi cos4sqrt(1 + cos^2 4) - pi sqrt(2) - piln|sqrt(1 + cos^2 4) + cos4| + piln|sqrt(2) - 1|#
#= color(green)(-pi (cos4sqrt(1 + cos^2 4) + sqrt2) - pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|)#
This value is around
Therefore, the total surface area should be:
#color(blue)(S) = 2pi sqrt(2) - piln|(sqrt(2) - 1)/(sqrt(2) + 1)| + pi (cos4sqrt(1 + cos^2 4) + sqrt2) + pi ln|(sqrt(1 + cos^2 4) + cos4)/(sqrt(2) - 1)|#
or about